Trigonometry for Calculus

Presented by the Quantitative Success Center

$$
\begin{array}{rlr}
\text { RECIPROCAL IDENTITIES } & \text { Quotient Identities } \\
\sin (\theta)=\frac{1}{\csc (\theta)} & \csc (\theta)=\frac{1}{\sin (\theta)} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\
\cos (\theta)=\frac{1}{\sec (\theta)} & \sec (\theta)=\frac{1}{\cos (\theta)} & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\tan (\theta)=\frac{1}{\cot (\theta)} & \cot (\theta)=\frac{1}{\tan (\theta)} &
\end{array}
$$

Remember: ALL identities can be written in terms of \qquad \& \qquad .

A. Unit circle

Recall: $x=\cos \theta, y=\sin \theta$ where θ is the angle you take going counterclockwise from the positive x-axis.

Quadrant	Are the \boldsymbol{x}-values positive or negative?	Are the \boldsymbol{y}-values positive or negative?	Are the $\frac{y}{x}$ values positive or negative?
I			
II			
III			
IV			

Find the sign of each trigonometric function in the respective quadrant.

Quadrant	$\cos x$	$\sin x$	$\tan x$	$\sec x$	$\csc x$	$\cot x$
I						
II						
III						
IV						

We can conclude - $\underline{\mathbf{A}} 11 \underline{\mathbf{S}}$ tudents \underline{T} ake $\underline{\mathbf{C}}$ alculus:

B. Pythagorean Identities

(Manipulating $\cos ^{2} \theta+\sin ^{2} \theta=1$ to get the other identities)
a. Since $x^{2}+y^{2}=1$ on the unit circle, we get $\cos ^{2} \theta+\sin ^{2} \theta=1$
b. Let's divide our identity from part a) by $\cos ^{2} \theta$ and see what we get:
c. Let's divide our identity from part a) by $\sin ^{2} \theta$ and see what we get:
d. We can conclude with the three trigonometric identities from (a)-(c):

C. Converting between degrees and radians.

Recall $\boldsymbol{\pi}=\mathbf{1 8 0}^{\circ}$

Degrees $^{\circ}$	Radians
30°	
	$\frac{\pi}{4}$
60°	
	$\frac{\pi}{2}$

Degrees $^{\circ}$	Radians
120°	
135°	
	$\frac{4 \pi}{3}$
	$\frac{11 \pi}{6}$

D. Special Right Triangles \& Reference Angles

Recall: SOH CAH TOA. $\sin x=\frac{\text { opposite }}{\text { hypotenuse }}, \cos x=\frac{\text { adjacent }}{\text { hypotenuse }}, \tan x=\frac{\text { opposite }}{\text { adjacent }}$
a. What is the reference angle for $\frac{2 \pi}{3}$?
b. What is the reference angle for $\frac{3 \pi}{4}$?
c. What is the reference angle for 240° ?
d. What is the reference angle for 330° ?

More Practice:

Find the exact values using unit circle/triangles/identities.

1. 30°

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

2. $\frac{\pi}{4}$

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

3. 60°

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

4. $\frac{\pi}{2}$

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

5. 120°

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

6. $\frac{4 \pi}{3}$

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

7. 135°

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

8. $\frac{11 \pi}{6}$

$\cos x=$	$\sec x=$
$\sin x=$	$\csc x=$
$\tan x=$	$\cot x=$

E. Determine the exact values for the following trigonometric functions when the exact angles are not given:

$\sin x$	$\cos x$	$\tan x$
$\frac{2}{3}$		
	$\frac{4}{5}$	$\frac{1}{4}$

F. Graphs of sine and cosine to also help determine exact values

b. Graph of $y=\cos x$

G. More resources

- For the review and/or its solutions, visit qsc.whittier.domains and click on "Workshops"
- https://tutorial.math.lamar.edu/classes/calci/calci.aspx

https://forms.gle/y6u2s8TQymPYA1vN9
More QSC Workshops

