<u>**Trigonometry for Calculus</u>** Presented by the Quantitative Success Center</u>

Remember: ALL identities can be written in terms of ______& _____.

A. Unit circle

Recall: $x = \cos \theta$, $y = \sin \theta$ where θ is the angle you take going counterclockwise from the positive x-axis.

Quadrant	Are the <i>x</i> -values positive or negative?	Are the <i>y</i> -values positive or negative?	Are the $\frac{y}{x}$ values positive or negative?
Ι			
Π			
III			
IV			

Find the sign of each trigonometric function in the respective quadrant.

Quadrant	cos x	sin x	tan x	sec x	csc x	cot x
Ι						
Π						
III						
IV						

We can conclude - \underline{A} ll \underline{S} tudents \underline{T} ake \underline{C} alculus:

B. Pythagorean Identities (Manipulating $\cos^2 \theta + \sin^2 \theta = 1$ to get the other identities)

- a. Since $x^2 + y^2 = 1$ on the unit circle, we get $\cos^2 \theta + \sin^2 \theta = 1$
- b. Let's divide our identity from part a) by $\cos^2 \theta$ and see what we get:

c. Let's divide our identity from part a) by $\sin^2 \theta$ and see what we get:

d. We can conclude with the three trigonometric identities from (a)-(c):

C. Converting between degrees and radians. Recall $\pi = 180^{\circ}$

Degrees°	Radians] [Degrees°	Radians
30°			120°	
	$\frac{\pi}{4}$	-	135°	
60°				$\frac{4\pi}{3}$
	$\frac{\pi}{2}$			$\frac{11\pi}{6}$

D. Special Right Triangles & Reference Angles

Recall: SOH CAH TOA.
$$\sin x = \frac{opposite}{hypotenuse}$$
, $\cos x = \frac{adjacent}{hypotenuse}$, $\tan x = \frac{opposite}{adjacent}$

a. What is the reference angle for $\frac{2\pi}{3}$?

b. What is the reference angle for $\frac{3\pi}{4}$?

c. What is the reference angle for 240°?

d. What is the reference angle for 330° ?

More Practice:

Find the exact values using unit circle/triangles/identities.

1. 30°

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

$2.\frac{\pi}{4}$

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

3. 60°

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

$4.\frac{\pi}{2}$

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

5. 120°

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

$$6.\frac{4\pi}{3}$$

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

7. 135°

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

$$8. \frac{11\pi}{6}$$

$\cos x =$	$\sec x =$
$\sin x =$	$\csc x =$
$\tan x =$	$\cot x =$

E. Determine the exact values for the following trigonometric functions when the exact angles are not given:

sin x	cos x	tan x
$\frac{2}{3}$		
		$\frac{1}{4}$
	$\frac{4}{5}$	

F. Graphs of sine and cosine to also help determine exact values

G. More resources

- For the review and/or its solutions, visit <u>gsc.whittier.domains</u> and click on "Workshops"
- <u>https://tutorial.math.lamar.edu/classes/calci/calci.aspx</u>

Workshop Survey

https://forms.gle/y6u2s8TQymPYA1vN9

More QSC Workshops

