Key

Trigonometry for Calculus

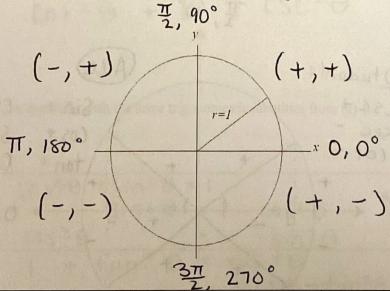
Presented by the Quantitative Success Center

RECIPROCAL IDENTITIES

Quotient Identities

$$\sin(\theta) = \frac{1}{\csc(\theta)} \qquad \csc(\theta) = \frac{1}{\sin(\theta)}$$

$$\cos(\theta) = \frac{1}{\sec(\theta)} \qquad \sec(\theta) = \frac{1}{\cos(\theta)} \qquad \tan \theta = \frac{\sin \theta}{\cos \theta}$$


$$\tan(\theta) = \frac{1}{\cot(\theta)} \qquad \cot(\theta) = \frac{1}{\tan(\theta)} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Remember: ALL identities can be written in terms of Sind & COST.

A. Unit circle

Recall: $x = \cos \theta$, $y = \sin \theta$

where θ is the angle you take going counterclockwise from the positive x-axis.

Quadrant	Are the x-values positive or negative?	Are the y-values positive or negative?	Are the $\frac{y}{x}$ values positive or negative?
I	+27	+	+
П	-112	+	- 100 E 100
Ш	42) (st	2,1,5	103 4/101
IV	+	-	_

Find the sign of each trigonometric function in the respective quadrant.

Quadrant	cosx	sin x	tan x	sec x	csc x	cotx
is it in the	l Aplic	4	+	+	+	+
II		+	1	3 1	+	3 212
III		-	+	1)	+
IV	+	_		+	_	_

B. Pythagorean Identities

(Manipulating $\cos^2 \theta + \sin^2 \theta = 1$ to get the other identities)

- a. Since $x^2 + y^2 = 1$ on the unit circle, we get $\cos^2 \theta + \sin^2 \theta = 1$
- b. Let's divide our identity from part a) by $\cos^2 \theta$ and see what we get: i.e. $\sin^2 \theta = 1 \cos^2 \theta$

$$\frac{(0S^2\Theta + Sin^2\Theta)}{(0S^2\Theta)} = \frac{1}{(0S^2\Theta)}$$

$$1 + tan^2\Theta = Sec^2\Theta$$

c. Let's divide our identity from part a) by $\sin^2 \theta$ and see what we get:

$$\frac{\cos^2\theta + \sin^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}$$

$$\cot^2\theta + 1 = \csc^2\theta$$

d. We can conclude with the three trigonometric identities from (a)-(c):

$$\cos^2\theta + \sin^2\theta = 1 - \cos^2\theta$$

(a)
$$COS^{2}\theta + Sin^{2}\theta = 1$$

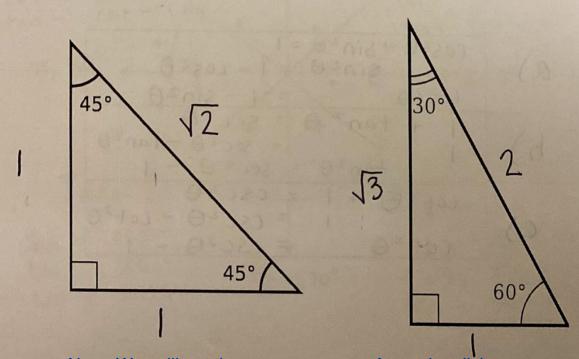
$$COS^{2}\theta + Sin^{2}\theta = 1 - LOS^{2}\theta$$

$$COS^{2}\theta = 1 - Sin^{2}\theta$$

$$1 + tan^{2}\theta = Sec^{2}\theta$$

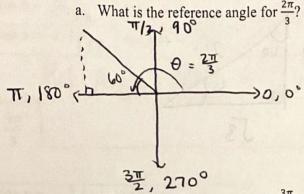
$$1 + tan^{2}\theta = Sec^{2}\theta - tan^{2}\theta$$

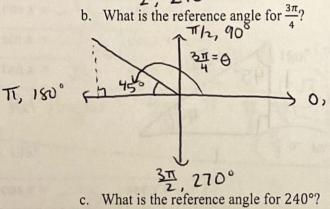
$$1 + tan^{2}\theta = Sec^{2}\theta - 1$$

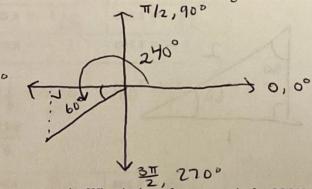

C. Converting between degrees and radians. Recall $\pi = 180^{\circ}$

ex:
$$\frac{30^{\circ}}{1} \times \frac{\pi}{180^{\circ}} = \frac{30\pi}{180} = \frac{\pi}{160^{\circ}}$$
ex: $\frac{4\pi}{3} \times \frac{180^{\circ}}{\pi} = \frac{4 \times 180^{\circ}}{3} = 240^{\circ}$

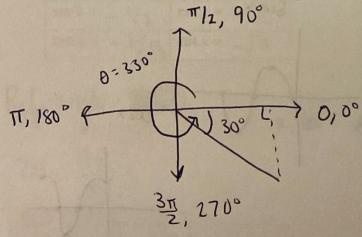
	' '	
Degrees°	Radians	
30°	I,	334
45°	$\frac{\pi}{4} \cdot \frac{180}{\pi} =$	1600
60° - T 1 180°	<u>T</u> 3	É
90°	$\frac{\pi}{2} \cdot \frac{1800}{11} = -$	5


Degrees°	Radians	
120° T 150° =	2II 3	
135° . TI	311	
240°	$\frac{4\pi}{3}$	
330°	$\frac{11\pi}{6} \cdot \frac{180}{77}$	= 11.

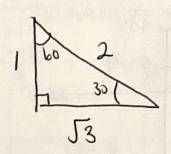

D. Special Right Triangles & Reference Angles



Note: We still get the same answers after rationalizing if we use 1/2 as the length across 30 degrees, (sqrt2)/2 as the length across 45 degrees, (sqrt3)/2 as the length across 60 degrees, and (sqrt4)/2=2/2=1 as the length across 90 degrees

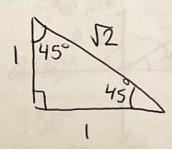

Recall: SOH CAH TOA.
$$\sin x = \frac{opposite}{hypotenuse}$$
, $\cos x = \frac{adjacent}{hypotenuse}$, $\tan x = \frac{opposite}{adjacent}$

d. What is the reference angle for 330°?

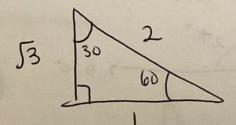

Ref. angle =
$$\Pi - \frac{2\pi}{3}$$

$$\frac{3\pi}{3} - \frac{2\pi}{3} = \begin{bmatrix} \Pi \\ 0 \\ 60^{\circ} \end{bmatrix}$$

More Practice:

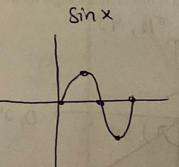

Find the exact values using unit circle/triangles/identities.

$\cos x = \sqrt{3}/2$	$\sec x = \frac{2}{\sqrt{3}}$
$\sin x = 1/2$	$\csc x = 2$
$\tan x = 1/53$	$\cot x = \sqrt{3}$

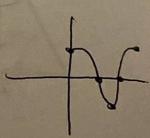


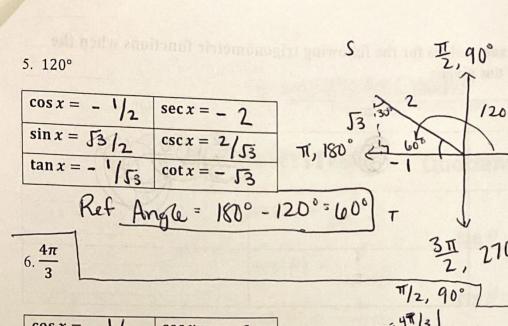
$$2.\frac{\pi}{4}$$
 or 45°

$\cos x = 1/52$	$\sec x = \sqrt{2}$
$\sin x = 1/\sqrt{5}$	$\csc x = \sqrt{2}$
$\tan x = 1$	$\cot x = 1$



$\cos x = 1/2$	$\sec x = 2$
$\sin x = \sqrt{3}/2$	$\csc x = 2/\sqrt{3}$
$\tan x = 1/\sqrt{3}$	$\cot x = \sqrt{3}$




$$4.\frac{\pi}{2}$$
 or 90

$\cos x = \bigcirc$	Secx = UNDEFINED
$\sin x =$	$\csc x = 1$
$\tan x = \bigcirc$	$\cot x = \bigcirc$
undefin	d

Wx

x = -1/2	$\sec x = -2$	J3 33 2 /20°	
$x = \frac{\sqrt{3}}{2}$ $x = -\frac{\sqrt{3}}{3}$	$cot x = \frac{2}{\sqrt{3}}$ $cot x = -\sqrt{3}$	TT, 180° 2 - 1	→ 0,0°
Ref Ar	Monach Land Company of the Company o	120° 5 60° T	C
		3 <u>T</u> , 270°	
		T/2, 90°	
x = -1/a	$\sec x = -9$	a=47/3	

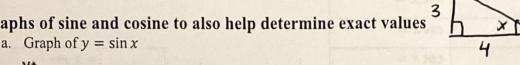
$\cos x = -1/2$	$\sec x = -2$	9=47	[]3	
$\sin x = -\sqrt{3}/2$	$\csc x = -2/\sqrt{3}$	T, 180° ;		— 0,6°
$\tan x = \sqrt{3}$	$\cot x = 1/\sqrt{3}$	-J3 60°	3	0,0
Ref Angle =	47 - T =	1 37	2)	
7. 135°	3	30 60, 3	프 90°	
			L, "	Jan

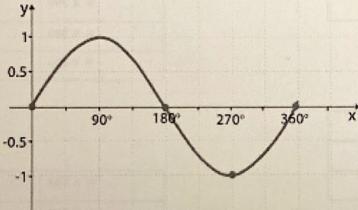
$\cos x = -1/\sqrt{2}$	$\sec x = -\int_2$
$\sin x = 1/\sqrt{2}$	$\csc x = \int 2$
$\tan x = -1$	$\cot x = -1$

Ref angle =
$$180^{\circ} - 135^{\circ} = 45^{\circ}$$

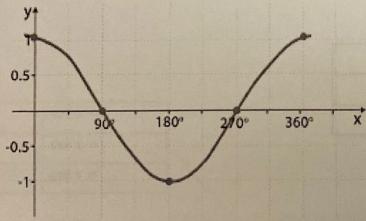
8. $\frac{11\pi}{6}$

$\cos x = \sqrt{3}/2$	$\sec x = 2/\sqrt{3}$
$\sin x = -1/2$	$\csc x = -2$
$\tan x = -1/53$	$\cot x = -\sqrt{3}$





E. Determine the exact values for the following trigonometric functions when the exact angles are not given:


$\sin x$	cos x	tanx
$2^{2} + b^{2} = 3^{2}; b = 5$	COSX = 5/3	tanx=2/55
1/517	Js 4/JI7	$1^{2} + 4^{2} = C^{2} = \int_{0}^{1} \int_{0}^{17} x$
Sinx = 3/5	4 5	tanx = 4/5

F. Graphs of sine and cosine to also help determine exact values

b. Graph of
$$y = \cos x$$

$$COS(0) = 1$$

 $COS(\pi/2) = 0$
 $COS(\pi) = 3 - 1$
 $COS(3\pi/2) = 0$

G. More resources

- For the review and/or its solutions, visit gsc.whittier.domains and click on "Workshops"
- https://tutorial.math.lamar.edu/classes/calci/calci.aspx