Trigonometry for Calculus
Presented by the Quantitative Success Center

RECIPROCAL IDENTITIES
$\sin (\theta)=\frac{1}{\csc (\theta)}$
$\cos (\theta)=\frac{1}{\sec (\theta)}$
$\tan (\theta)=\frac{1}{\cot (\theta)}$

Quotient Identities

$$
\begin{aligned}
& \csc (\theta)=\frac{1}{\sin (\theta)} \\
& \sec (\theta)=\frac{1}{\cos (\theta)} \\
& \cot (\theta)=\frac{1}{\tan (\theta)}
\end{aligned}
$$

Remember: ALL identities can be written in terms of $\sin \theta \& \cos \theta$.
A. Unit circle

Recall: $x=\cos \theta, y=\sin \theta$
where θ is the angle you take going counterclockwise from the positive x-axis.

Quadrant	Are the x-values positive or negative?	Are the y-values positive or negative?	Are the $\frac{y}{x}$ values positive or negative?
I	+	+	+
II	-	-	-
III	-	-	+

Find the sign of each trigonometric function in the respective quadrant.

Quadrant	$\cos x$	$\sin x$	$\tan x$	$\sec x$	$\csc x$	$\cot x$
I	+	+	+	+	+	+
II	+	+	-	-	+	-
III		-	+	-	+	+
IV	+	-	-	-	-	

*hypotenuse is always positive

We can conclude - $\underline{A l l} \underline{\text { Students }}$ Take \underline{C} calculus:

B. Pythagorean Identities (Manipulating $\cos ^{2} \theta+\sin ^{2} \theta=1$ to get the other identities)

7 can rearrange + Solve for
a. Since $x^{2}+y^{2}=1$ on the unit circle, we get $\cos ^{2} \theta+\sin ^{2} \theta=1$ any part
b. Let's divide our identity from part a) by $\cos ^{2} \theta$ and see what we get: i.e. $\sin ^{2} \theta=1-\cos ^{2} \theta$

$$
\begin{aligned}
& \frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta
\end{aligned}
$$

c. Let's divide our identity from part a) by $\sin ^{2} \theta$ and see what we get:

$$
\begin{aligned}
& \frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \\
& \cot ^{2} \theta+1=\csc ^{2} \theta
\end{aligned}
$$

d. We can conclude with the three trigonometric identities from (a)-(c):
a)

$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \\
\sin ^{2} \theta & =1-\cos ^{2} \theta \\
\cos ^{2} \theta & =1-\sin ^{2} \theta \\
1+\tan ^{2} \theta & =\sec ^{2} \theta \\
1 & =\sec ^{2} \theta-\tan ^{2} \theta \\
\tan ^{2} \theta & =\sec ^{2} \theta-1 \\
\cot ^{2} \theta+1 & =\csc ^{2} \theta \\
\cot ^{2} \theta \quad & =\csc ^{2} \theta-\cot ^{2} \theta \\
& =\csc ^{2} \theta-1
\end{aligned}
$$

b)
c)
C. Converting between degrees and radians.

$$
\text { Recall } \pi=18 \mathbf{0}^{\circ}
$$

ex: $\frac{30^{2}}{1} \times \frac{\pi}{180^{2}}=\frac{30 \pi}{180}=\frac{\pi}{6}$
ex: $\frac{4 \pi}{3} \times \frac{180^{\circ}}{\pi}=\frac{4 \times 180^{\circ}}{3}=240^{\circ}$

D. Special Right Triangles \& Reference Angles

Note: We still get the same answers after rationalizing if we use $1 / 2$ as the length across 30 degrees,

Recall: SOH CAH TOA. $\sin x=\frac{\text { opposite }}{\text { hypotenuse }}, \cos x=\frac{\text { adjacent }}{\text { hypotenuse }}, \tan x=\frac{\text { opposite }}{\text { adjacent }}$
a. What is the reference angle for $\frac{2 \pi}{3}$?

$$
\begin{aligned}
& \text { Ref. angle }=\pi-\frac{2 \pi}{3} \\
& \qquad \frac{3 \pi}{3}-\frac{2 \pi}{3}=\begin{array}{l}
\frac{\pi}{3} \\
\hline 0 R \\
60^{\circ}
\end{array}
\end{aligned}
$$

b. What is the reference angle for $\frac{3 \pi}{4}$?

$$
\begin{aligned}
& \text { Ref. Angle }=\pi-\frac{3 \pi}{4} \\
& \qquad \frac{4 \pi}{4}-\frac{3 \pi}{4}=\frac{\pi}{4} \text { or } 45^{\circ}
\end{aligned}
$$

c. What is the reference angle for 240° ?

$$
\text { Ref. Angle }=240^{\circ}-180^{\circ}=\sqrt{60^{\circ}} \begin{aligned}
& \frac{0 R}{\pi / 3}
\end{aligned}
$$

Ref Angle $=$

$$
360^{\circ}-330^{\circ}=30^{\circ} \text { or } \frac{\pi}{6}
$$

More Practice:
Find the exact values using unit circle/triangles/identities.
or $\pi / 6$

1. $30^{\circ} \mathrm{all} 4$

$\cos x=\sqrt{3} / 2$	$\sec x=2 / \sqrt{3}$
$\sin x=1 / 2$	$\csc x=2$
$\tan x=1 / \sqrt{3}$	$\cot x=\sqrt{3}$

2. $\frac{\pi}{4}$ or 45°

$\cos x=1 / \sqrt{2}$	$\sec x=\sqrt{2}$
$\sin x=1 / \sqrt{2}$	$\csc x=\sqrt{2}$
$\tan x=1$	$\cot x=1$

3.60° or $\pi / 3$

$\cos x=1 / 2$	$\sec x=2$
$\sin x=\sqrt{3} / 2$	$\csc x=2 / \sqrt{3}$
$\tan x=1 / \sqrt{3}$	$\cot x=\sqrt{3}$

4. $\frac{\pi}{2}$ OR 90
$\sin x$

$\cos x=0$	$\sec x=$ UNDEF/N ED
$\sin x=1$	$\csc x=1$
$\tan x=$	$\cot x=0$

undefined

5. 120°

$\cos x=-1 / 2$	$\sec x=-2$
$\sin x=\sqrt{3} / 2$	$\csc x=2 / \sqrt{3}$
$\tan x=-1 / \sqrt{3}$	$\cot x=-\sqrt{3}$

S

6. $\frac{4 \pi}{3}$

$$
\frac{3 \pi}{2}, 270^{\circ}
$$

$\pi / 2,90^{\circ}$

$\cos x=-1 / \sqrt{2}$	$\sec x=-\sqrt{2}$
$\sin x=1 / \sqrt{2}$	$\csc x=\sqrt{2}$
$\tan x=-1$	$\cot x=-1$

$$
\begin{array}{ll|l|}
\hline \cos x=\sqrt{3} / 2 & \sec x=2 / \sqrt{3} \\
\hline \sin x=-1 / 2 & \csc x=-2 \\
\hline \tan x=-1 / \sqrt{3} & \cot x=-\sqrt{3} \\
\text { Ref angle }=2 \pi \frac{\pi}{2} \\
2 \pi-\frac{11 \pi}{6}=\frac{11 \pi}{6}=\frac{\pi}{6} \\
12 \pi
\end{array}
$$

E. Determine the exact values for the following trigonometric functions when the exact angles are not given:

$\sin x$	$\cos x$	$\tan x$
$2^{2}+b^{2}=3^{\frac{2}{3}} ; b=\sqrt{5}$	2	$\cos x=\sqrt{5} / 3$

F. Graphs of sine and cosine to also help determine exact values ${ }^{3}$
a. Graph of $y=\sin x$

$\sin \left(0^{\circ}\right)=0$
$\sin \left(90^{\circ}\right)=1$
$\sin \left(180^{\circ}\right)=0$
$\sin \left(270^{\circ}\right)=-1$
b. Graph of $y=\cos x$

$$
\begin{aligned}
& \cos (0)=1 \\
& \cos (\pi / 2)=0 \\
& \cos (\pi)=-1 \\
& \cos (3 \pi / 2)=0
\end{aligned}
$$

G. More resources

- For the review and/or its solutions, visit qsc. whittier.domains and click on "Workshops"
- hittps://tutorial.math.lamar.edu/classes/calci/calci.aspx

