Factoring Review Presented by the Quantitative Success Center

Source: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.celinaschools.org/Downloads/Factoring%20Review%20worksheet.pdf

Factoring Using GCF:

To factor using a GCF, take the greatest common factor (GCF), for the numerical coefficient. When choosing the GCF for the variables, if all terms have a common variable, take the ones with the lowest exponent.

Example: $9x^4 + 3x^3 + 12x^2$ GCF: Coefficients = Variables (x) = GCF =

Next, you just divide each monomial by the GCF!

Put it all together!

Answer =

4) p + prt

Then, check by using the distributive property!

Factor each of the following using the GCF and check by using the distributive property:

1) $2a + 2b$	5) $10x - 15x^3$
2) 18c – 27d	6) $21r^3s^2 - 14r^2s$
3) $hb + hc$	7) $c^3 - c^2 + 2c$
(1) $n + nt$	8) $26x^4y - 39x^3y^2 + 52x^2y^3 - 13xy^4$

Factoring Trinomials (Case I):

Case I is when there is a coefficient of 1 in front of your variable² term (x^2) .

You have two hints that will help you:

- 1) When the last sign is addition, both signs are the same and match the middle term.
- 2) When the last sign is subtraction, both signs are different, and the larger number goes with the sign of the middle term.

Examples:
Hint #1:Hint #2:
 $x^2 - 5x + 6$ $x^2 - 5x + 6$ $x^2 + 5x - 36$ (x -)(x -)(x -)(x +)Find factors of 6, w/ sum of 5.Find factors of 36 w/ difference of 5.(x -)(x -)(x -)(x +)CHECK USING FOILCHECK USING FOIL

Factor each trinomial into two binomials and check using FOIL:

1) $a^2 + 3a + 2$ 6) $x^2 - 14x + 49$

2) $y^2 + 12y + 35$ 7) $x^2 - 6x - 7$

3) $a^2 + 11a + 18$ 8) $y^2 + 4y - 5$

4) $a^2 - 8a + 7$ 9) $c^2 + 2c - 35$

10) $z^2 + 9z - 36$

5) $x^2 - 10x + 24$

Factoring Trinomials (Case II):

Use Case II when a trinomial has a coefficient other than 1 for the x^2 term.

Let's look at the following example: $6x^2 + 5x - 4$

1) Look for a GCF: There is no GCF for this trinomial and the only way this method works is if you take it out right away.

- 2) Multiply ac: $6x^2 + 5x - 4$ $a = ___$ $c = ___$ $a^*c = ___$
- 3) Find two numbers that add to b, but multiplies to ac:
- 4) Replace the b term (middle term) with the numbers found in step 3.
 - $6x^2$ _____ 4
- 5) Factor by grouping:

6) Take out the GCF:

7) Foil Check

1) $2x^2 + 15x + 7$	2) $3x^2 - 5x - 12$
3) $4x^2 - 16$	4) $7x^2 - 22x + 3$
c) 10	.,
5) $x^3 + 27$	6) $8x^3 - 125$

Factoring Completely:

When asked to factor completely, you will have to use a combination of the methods that we have used previously.

 $\frac{Factor Completely:}{1) 4x^2 + 20x + 24}$

2) $10x^2 - 80x + 150$

3) $9x^2 + 90x - 99$

Example:	Description of steps:
$2x^5 - 8x^3 =$	Step 1: Factor out greatest common factor $(2x^3)$
	Step 2: Determine if the remaining binomial is the difference of
$2x^3(x^2-4)^4 =$	two squares
2x(x-4) =	Step 2: It is the difference of two squares
	(skip steps 3-4)
$2x^{3}(x+2)(x-2)$	Step 5: Can it be factored further? No
$3x^4 - 18x^3 + 27x^2 =$	Step 1: Factor out greatest common factor $(3x^2)$
	Step 2: Determine if the remaining binomial is the difference of
$3x^2(x^2-6x+9)$	two squares: NOT binomial.
	Step 3: Determine if the remaining trinomial is a perfect square:
2 4 5 2 4	It seems to be $(x-3)^2$
$3x^2(x-3)^2$	Step 5: Can it be factored further? No
$6a^2 - 11a + 4 =$	Step 1: no GCF
	Step 2: Not a binomial Step 3: Not a perfect square: factor by AC method (or trial &
$6a^2 - 3a - 8a + 4 =$	Step 3: Not a perfect square; factor by AC method (or trial & error).
	a. Find the product of ac (24).
	b. Find two numbers whose product is ac (24) and whose
$(6a^2 - 3a) + (-8a + 4) \neq$	sum is b (-11). The two numbers are -8 and -3.
	c. Rewrite the trinomial so the middle term is the sum of
3a(2a-1) + (-4)(2a-1) =	the two numbers found as coefficients.
	Step 4: Factor by grouping.
(3a-4)(2a-1)	Step 5: Cannot be factored further.
xy + 8x + 3y + 24 =	Skip steps 1-3.
	Step 4: Factor by grouping
(xy+8x) + (3y+24) =	a. group two terms together
	b. find GCF of each groupc. Use distributive property to "pull out" the common
x(y+8) + 3(y+8) =	term.
x(y+0) + 3(y+0) =	d. Rewrite as product of two binomials
	Step 5: Cannot be factored further
(x+3)(y+8)	
$2ab^5 + 8ab^4 + 2ab^3 =$	Step 1: Find GCF $(2ab^3)$
	Skip step 2 (not a binomial remaining)
$2ab^{3}(b^{2}+4b+1)$	Step 3-4: Not a perfect square and can't be factored.
	Step 5: Cannot be factored further.
$x^{2} + 5x + 6 =$	Skip steps 1-2
(x+3)(x+2)	Step 3: Not a perfect square, coefficient of first term is 1, so just
	reverse FOIL:
	 a. First two terms are x and x b. Last two terms have to multiply to be 6 and sum to be
	5. The two numbers are 2 and 3.
	c. Both signs need to be positive
	Step 4: Check the OI term to make sure it's correct. It is.

Polynomial:	Factored form:
$12a^2b^2 - 3ab$	
$4x^2 - 9$	
$x^2 - 16y^2$	
$x^2 - 4x + 2xy - 8y$	
$x^2 - 9x + 20$	
$9x^2 - 12x + 4$	
$8x^3 - x^2$	
<i>x</i> ² + 49	
$16x^3 + 16x^2 + 3x$	
$x^2 - 9x + 18$	
$6x^2 + 13x + 6$	

$2x^2 + 3x - 2$	
$5x^2 - 22x - 15$	
$3x^3 + 9x^2 - 12x$	
$x^2 + 3x - 28$	
$x^2 - 8x + 16$	
$4x^2 - 7xy + 3y^2$	
$x^3 - xy + x^2 - y$	
$8x^2 - 6x - 2$	
$x^4 - 1 1x^3 + 24x^2$	
$6x^4y^5 - 2x^2y^3 + 14x^3y^4$	

Workshop Survey

https://forms.gle/y6u2s8TQymPYA1vN9

More QSC Workshops

