Factoring Review

Presented by the Quantitative Success Center

Strategy for factoring polynomials:

Step 1. $\underline{G C F}$: If the polynomial has a greatest common factor other than 1, then factor out the greatest common factor.
Step 2. Binomials: If the polynomial has two terms (it is a binomial), then see if it is the difference of two squares: $\left(a^{2}-b^{2}\right)$.

Remember if it is the sum of two squares, it will NOT factor.
Step 3. Trinomials: If the polynomial is a trinomial, then check to see if it is a perfect square trinomial which will factor into the square of a binomial: $(a+b)^{2}$ or $(a-b)^{2}$.

* If it is not a perfect square trinomial, use factoring by trial and error or the AC method.
* Strategy for factoring $a x^{2}+b x+c$ by grouping (AC method):
a. Form the product ac
b. Find a pair of numbers whose product is ac and whose sum is b.
c. Rewrite the polynomial so that the middle term (bx) is written as the sum of two terms whose coefficients are the two numbers found in step 2.
d. Factor by Grouping (as in step 4)

Step 4. Other polynomials. If it has more than three terms, try to factor it by grouping.
a. Group two terms together which can be factored further
b. Use the distributive property in reverse to factor out common terms
c. Write the factors as multiplication of binomials.

Step 5. Final check. See if any of the factors you have written can be factored further. If you have overlooked a common factor. vou can catch it here.

Remember the following properties:	
Perfect Squares:	$(a+b)^{2}=a^{2}+2 a b+b^{2} \quad$ and $(a-b)^{2}=a^{2}-2 a b+b^{2}$
Difference of two squares:	$a^{2}-b^{2}=(a-b)(a+b)$
Sum of two squares:	$a^{2}+b^{2}$ is NOT factorable

Sum/Difference of 2 Cubes

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

To factor using a GCF, take the greatest common factor (GCF), for the numerical coefficient. When choosing the GCF for the variables, if all terms have a common variable, take the ones with the lowest exponent.

Example: $9 x^{4}+3 x^{3}+12 x^{2}$
GCF: Coefficients =
Variables (x) $=$
GCF =
Next, you just divide each monomial by the GCF!

Put it all together!
Answer $=$
Then, check by using the distributive property!

Factor each of the following using the GCF and check by using the distributive property:

1) $2 a+2 b$
2) $10 x-15 x^{3}$
3) $18 \mathrm{c}-27 \mathrm{~d}$
4) $21 r^{3} s^{2}-14 r^{2} s$
5) $\mathrm{hb}+\mathrm{hc}$
6) $c^{3}-c^{2}+2 c$
7) $p+p r t$
8) $26 x^{4} y-39 x^{3} y^{2}+52 x^{2} y^{3}-13 x y^{4}$

Case I is when there is a coefficient of 1 in front of your variable ${ }^{2}$ term $\left(x^{2}\right)$.
You have two hints that will help you:

1) When the last sign is addition, both signs are the same and match the middle term.
2) When the last sign is subtraction, both signs are different, and the larger number goes with the sign of the middle term.

Examples:

Hint \#1:
$x^{2}-5 x+6$
(x-) (x-)
Find factors of $6, w /$ sum of 5 .
($\mathrm{x}-\ldots$) $(\mathrm{x}-\ldots)$
CHECK USING FOIL

Hint \#2:
$x^{2}+5 x-36$
($\mathrm{x}-\mathrm{H})(\mathrm{x}+$)
Find factors of $36 \mathrm{w} /$ difference of 5.
(x - \qquad $)(\mathrm{x}+\ldots)$
CHECK USING FOIL

Factor each trinomial into two binomials and check using FOIL:

1) $a^{2}+3 a+2$
2) $x^{2}-14 x+49$
3) $y^{2}+12 y+35$
4) $x^{2}-6 x-7$
5) $a^{2}+11 a+18$
6) $y^{2}+4 y-5$
7) $a^{2}-8 a+7$
8) $c^{2}+2 c-35$
9) $z^{2}+9 z-36$
10) $x^{2}-10 x+24$

Factoring Trinomials (Case II):

Use Case II when a trinomial has a coefficient other than 1 for the x^{2} term.
Let's look at the following example: $6 x^{2}+5 x-4$

1) Look for a GCF: There is no GCF for this trinomial and the only way this method works is if you take it out right away.
2) Multiply ac:
$6 x^{2}+5 x-4 \quad a=$
\qquad
$\mathrm{a}^{*} \mathrm{c}=$ \qquad
3) Find two numbers that add to \mathbf{b}, but multiplies to ac:
4) Replace the b term (middle term) with the numbers found in step 3.
$6 x^{2} \quad-4$
5) Factor by grouping:
6) Take out the GCF:
7) Foil Check

Factor each of the following:

1) $2 x^{2}+15 x+7$
2) $3 x^{2}-5 x-12$
3) $4 x^{2}-16$
4) $7 x^{2}-22 x+3$
5) $x^{3}+27$
6) $8 x^{3}-125$

Factoring Completely:

When asked to factor completely, you will have to use a combination of the methods that we have used previously.

Factor Completely:

1) $4 x^{2}+20 x+24$
2) $10 x^{2}-80 x+150$
3) $9 x^{2}+90 x-99$

Factor the following polynomials using the strategy and examples above:

Polynomial:	Factored form:
$12 a^{2} b^{2}-3 a b$	
$4 x^{2}-9$	
$x^{2}-16 y^{2}$	
$x^{2}-4 x+2 x y-8 y$	
$x^{2}-9 x+20$	
$9 x^{2}-12 x+4$	
$x^{2}-9 x+18$	
$16 x^{3}+16 x^{2}+3 x$	

MAT 0024	Ch 13 Factoring Review Worksheet Instructor: C. St.Denis
$2 x^{2}+3 x-2$	
$5 x^{2}-22 x-15$	
$3 x^{3}+9 x^{2}-12 x$	
$x^{2}+3 x-28$	
$x^{2}-8 x+16$	
$4 x^{2}-7 x y+3 y^{2}$	
$x^{4}-11 x^{3}+24 x^{2}$	
$x^{3}-x y+x^{2}-y$	

https://forms.gle/y6u2s8TQymPYA1vN9
More QSC Workshops

