Equations and Inequalities

Presented by QSC

Definitions

- An expression is a \qquad

The following definitions of an equation are equivalent:
\qquad set \qquad to each other

- A \qquad that expresses the \qquad
\qquad by connecting them with
\qquad .

Common Equations/Examples

- Area $A_{\text {rectangle }}=b h, A_{\text {circle }}=\pi r^{2}$
- Volume $V_{\text {rectangular solid }}=l w h, V_{\text {sphere }}=\frac{4}{3} \pi r^{3}$
- Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- Pythagorean Theorem $c^{2}=a^{2}+b^{2}$
- Distance $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
- Circle $(x-h)^{2}+(y-k)^{2}=r^{2}$
- Quadratic Formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Solving Not Too Scary Equations

- Solve $3 x-4=2$
- Solve $4(x-1)+2=10$
- Solve $6 p=15 p-30$

Absolute Value Equations

- Recall that the absolute value of a number is its distance from 0 on the number line. Absolute values are always greater than or equal to 0 .
Examples: $|-11|=$ \qquad $|11|=$ \qquad
- For any algebraic expression, x, and any positive real number, n, if $|x|=n$, then $x=n$ or $x=-n$.
- How do we solve absolute value equations?
- Step 1: Isolate the absolute value expression
- Step 2: Write the equivalent equations. I.e. set the inside expression equal to the positive value it is equal to, and set the inside expression equal to the negative value
- Step 3: Solve each equation
- Step 4: Check each solution
- Solve $|3 x-4|=2$
- Solve $4|x-1|+2=10$

Linear Inequalities

- A linear inequality is an inequality in one variable that can be written in one of the following forms where a, b, c are real numbers and $a \neq 0 . a x+b<c, a x+b \leq$ c, $a x+b>c, a x+b \geq c$
- Solve linear inequalities the way you would a regular linear equation. The difference is we have an inequality symbol instead of = and the solution could be a set of values.
- Properties:
- Addition/subtraction: whatever you do to one side, do to the other
- Multiplication/division: whatever you do to one side, do to the other BUT
- Gotta be careful though! If you multiply or divide by a negative value, we have to flip the symbol of the inequality. Example: $3<4$. If we multiply by -1 , do we get $-3<-4$? This is not true, $-3>-4$. This is why we have to flip the symbol.
- Writing in interval notation:
- Parenthesis will not include the value
- Bracket includes the value
- $\quad \infty$ or $-\infty$ cannot be included since it is not a finite value that can be reached

In the following exercises, solve, graph, and write solution in interval notation.

- $6 p>15 p-30$
- $9 h-7(h-1) \leq 4 h-23$

Absolute Value Inequalities (with < or \leq)

- For any algebraic expression, x, and any positive real number, n,
- If $|x|<n$, then $-n<x<n$
- If $|x| \leq n$, then $-n \leq x \leq n$
- How do we solve absolute value inequalities with $<$ or \leq ?
- Step 1: Isolate the absolute value expression
- Step 2: write the equivalent compound inequality
- Step 3: Solve the compound inequality
- Step 4: Graph the solution
- Step 5: Write the solution using interval notation

In the following exercises, solve, graph, and write solution in interval notation.

- $|2 x-5| \leq 3$
- $|5 x+1|<-2$

Absolute Value Inequalities (with $>$ or \geq)

- For any algebraic expression, x, and any positive real number, n,
- If $|x|>n$, then $x>n$ or $x<-n$
- If $|x| \geq n$, then $x \geq n$ or $x \leq-n$
- How do we solve absolute value inequalities with $>$ or \geq ?
- Step 1: Isolate the absolute value expression
- Step 2: write the equivalent compound inequality
- Step 3: Solve the compound inequality
- Step 4: Graph the solution
- Step 5: Write the solution using interval notation

In the following exercises, solve, graph, and write solution in interval notation.

- $3|x|+4 \geq 1$
- $|x-5|>-2$

Exponential Equations

The following definitions of an exponential equation are equivalent:

- An exponential function is a function whose value is a constant raised to the power of an argument
- An exponential equation is an equation where the variable is located in the exponent position of the equation
Examples:
- $y=2^{x}, f(x)=9^{5 x-3}, h(t)=4^{t}+1$

What are they useful for?

- Exponential growth or exponential decay models
- Solve $2^{x}=2^{7}$
- Solve $16^{4 x-3}=32^{\frac{x}{5}}$
- Solve $2^{x}=15$

